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As AI-based decision support (ADS) tools are broadly adopted, it is critical to understand how humans can effectively incorporate
AI recommendations into their decision-making. However, existing research studying how humans calibrate their reliance on AI
recommendations often overlooks a key difference between human and AI judgments. Whereas humans reason about the broader
phenomena of interest in a decision — for example, creditworthiness, disease status, or recidivism risk — AI models predict narrow
outcomes based on readily available historical data. Because these observed outcomes are merely proxies of the broader phenomena
considered by decision-makers, they may be subject to various forms of bias. We refer to this gap between human and AI decision-
making goals as outcome measurement error. We argue that failing to address outcome measurement error can produce misleading
evaluations of “appropriate reliance” in AI-assisted decision-making. In particular, we identify three sources of outcome measurement
error that can bias naive evaluations of appropriate reliance. Based on a broad synthesis of existing literature, we propose a unifying
framework for describing outcome measurement assumptions. We use our framework to identify future lines of research that account
for outcome measurement in the evaluation of appropriate reliance.

Additional Key Words and Phrases: AI-assisted decision-making; Measurement; Artificial intelligence; Trust

ACM Reference Format:
Luke Guerdan, Kenneth Holstein, and Zhiwei Steven Wu. 2022. Under-reliance or misalignment? How proxy outcomes limit measure-
ment of appropriate reliance in AI-assisted decision-making. 1, 1 (April 2022), 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

AI-based systems are increasingly being used to augment human judgement in domains such as healthcare, lending,
and child welfare. As humans integrate AI predictions and recommendations into their decision-making, a growing
body of work has focused on achieving complementary performance, where the human-AI team makes better decisions
than either acting in isolation [3, 33]. To achieve such complementary performance, humans must know to rely on
AI-based recommendations when appropriate, but to follow their own judgement otherwise. By establishing measures
of appropriate reliance, it may be possible to identify cases when humans are blindly following recommendations (i.e.,
over-reliance) or disregarding recommendations too often (i.e., under-reliance) [27].

However, a central limitation of current evaluations of appropriate reliance in AI-assisted decision-making is that they
are performed with respect to the outcomes considered by AI models, not necessarily those of interest to the human
decision-makers within human-AI teams. Work assessing the quality of human-AI decision-making often reports results
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in terms of “performance” operationalized by accuracy, AUC, or a similar statistical measure [3, 24, 25]. Researchers
claim humans are under-reliant when they fail to follow the AI’s recommendation despite it being “correct”. Similarly,
researchers report over-reliance in cases where humans follow the model despite it being “incorrect” [4, 8]. Yet these
notions of decision quality hinge on the definition of ground truth considered by the AI system. Consequentially,
resulting assessments of human reliance are only valid to the extent that the ground truth encoded in labels accurately
reflects the goals of decision-makers.

In contrast to the observable proxy outcomes typically considered by AI systems, humans make decisions based
on meaning-rich representations of the world, including latent constructs [17, 23]. For instance, a loan officer might
consider the creditworthiness of a lendee while deciding whether to approve a new line of credit; or a physician
might evaluate cardiovascular disease risk holistically as a combination of a number of factors. “Creditworthiness”
and “cardiovascular disease risk” are examples of latent constructs that are not directly observable in the world, but
can be operationalized via a measurement model [21]. AI-based decision support tools assume de-facto measurement
models when they assign an outcome label – loan default or heart attack events, for example – as a proxy for the latent
construct of interest. We refer to this gap between the construct of interest to human decision-makers and the proxy
used by AI systems as outcome measurement error.

Outcome measurement error shapes expert reliance in real-world AI-assisted decision-making deployments. In
pre-trial detention decisions, juvenile defendants are commonly identified as high-risk by AI systems due to the
connection between youth and re-arrest [15]. However, judges sometimes override these high-risk scores because youth
is seen as a mitigating factor for culpability [32]. Here, the gap between judges’ notion of “risk to society” and the
re-arrest proxy targeted by the AI contributes to apparent “under-reliance”. In child welfare, AI-based decision support
tools have been introduced to help social workers assess whether children are at risk of abuse. One tool, the Allegheny
County Family Screening Tool (AFST), uses placement in foster care within two years as a proxy for abuse and neglect.
Yet social workers have reported overriding the AFST’s recommendations, in part because its long-term view of risk
and its focus on predicting placement in foster care is incongruent with their own focus on assessing actual, near-term
safety risks to children [22].

Based on the challenges discussed above, there is a pressing need to develop strategies for evaluating appropriate
reliance in the presence of outcome measurement error. However, a key impediment to establishing these strategies is
that the sources and implications of outcome measurement error remain poorly understood in AI-assisted decision-
making. Our current understanding of outcome measurement error is scattered across work in quantitative social
sciences [21, 29], economics [6, 23, 30], and machine learning [11, 12, 26], with limited synthesis of general trends
and best practices. At a basic level, we lack a synthesis of the common error sources that should be considered
while developing measures of appropriate reliance. Moreover, we do not have a framework for articulating outcome
measurement assumptions, along with their implications on assessing appropriate reliance. This makes it difficult to
understand how existing assessments of appropriate reliance might be impacted by outcome measurement error.

Therefore, in this work, we provide a foundation for characterizing sources and implications of outcome measurement
error in AI-assisted decision-making, and use this framework to highlight nuances in the evaluation of appropriate
reliance. Our work includes two key contributions. First, we identify outcome measurement-related challenges
that should be considered while developing assessments of appropriate reliance in AI-assisted decision
support (Section 2). In particular, we highlight challenges arising from the datasets used to develop AI-based decision
support tools, and identify three sources of outcome measurement error. We discuss how evaluations of appropriate
reliance could be incomplete if these challenges are not appropriately addressed. Second, we provide a unifying
Manuscript submitted to ACM
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framework for characterizing the outcome measurement process in AI-assisted decision support (Section 3).
We propose a three-step process — measurement, prediction, and evaluation — involved in the development of AI-based
decision support tools. We use this framework to describe a broad set of AI-based decision support methods that have
been proposed in the literature (see Table 1).

2 BARRIERS TO MEASURING APPROPRIATE RELIANCE IN AI-ASSISTED DECISION-MAKING

In this section, we draw attention to challenges that, left unaddressed, may lead to misleading evaluations of appropriate
reliance. We begin by discussing the datasets used by AI-based decision support tools. We note important distinctions
between datasets used to train “real-world” deployments of AI-based systems, and those often included in current
evaluations of appropriate reliance [3, 4, 8, 35]. Based on these differences, we then highlight three forms of outcome
measurement error — construct validity of outcome proxies, intervention effects, and selective labels – that are likely to
impact assessments of appropriate reliance.

2.1 Datasets used to develop AI-assisted decision-making systems

Fig. 1. Structural causal model showing the data generative process that gives rise to training data used by AI-based decision support
tools. 𝑋 represents observable data that plays a factor in the expert decision, 𝑍 represents unobserved information only available to
humans, 𝐷 represents historical expert decisions, and 𝑌 ∗ represents the primary outcome of interest to decision-makers. We show 𝑌 ∗

in a box rather than a circle to highlight that this outcome is operationalized via a measurement model rather than observed directly.

One barrier to evaluation of appropriate reliance is that datasets used to examine reliance patterns in lab-based
studies differ from those used to train real-world AI-based decision support tools. Lab-based studies often conduct
empirical evaluations using simplified experimental tasks to make the evaluation feasible with online participants who
lack domain expertise [3, 4, 8, 35]. For instance, previous reliance evaluations have asked participants to predict the sale
price of houses [8], the nutrient content of food [4], or forest cover from images [35]. However, datasets used in these
tasks differ from real-world decision support settings in important ways.

In real-world decision support settings, the AI-based tool is intended to improve existing decision-making practices.
Therefore, model developers rely on historical data from past human decisions to train the model embedded in the
tool. Using data generated from past human decisions introduces important nuances that should be considered during
model development and during assessment of appropriate reliance. For instance, in the course of making their decisions,
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humans might have had access to additional information that is not available within the recorded dataset. Additionally,
the human decision may have influenced the outcome observed in the historical data. In contrast, datasets used in
many lab-based assessments of reliance are not subject to the influence of past human decisions (an exception includes
recidivism prediction in [35]).

To improve the ecological validity of lab-based assessments of appropriate reliance, it is critical to understand the
real-world processes that give rise to the datasets upon which AI-based decision support tools are trained. In causal
inference and statistics, these real-world processes are often described by data generative processes. Causal directed
acyclic graphs (DAGs) provide one graphical tool for reasoning about a data generative processes, where arrows reflect
causal relationships between different nodes [31]. We propose a DAG that describes the data generative process for
datasets used by AI-based decision support tools in Figure 1. In this figure, 𝑋 involves observed information (e.g.,
medical history, public welfare records) that is digitally recorded and leveraged as features in a model. Additionally, 𝑍
represents contextual information that is available to experts but unavailable to a model. 𝑍 is sometimes referred to as
a confounder or unobservable in AI-assisted decision-making literature (where confounders are typically indicated by
dotted lines in DAGs) [12, 23]. In the figure, 𝐷 describes the decision reached by the human based on 𝑋 and 𝑍 . Finally,
𝑌 ∗ shows the historical outcome that resulted from 𝑋 , 𝑍 , and 𝐷 .

The outcome 𝑌 ∗ shown in Figure 1 plays a central role in the expert decision-making process. Specifically, 𝑌 ∗

represents the unobserved outcome of interest that humans consider as they weigh their decision. A judge might
consider 𝑌 ∗ to be “violent crime", while a social worker might consider 𝑌 ∗ as “serious abuse and neglect". However,
because 𝑌 ∗ is operationalized via a measurement model rather than observed directly, we represent 𝑌 ∗ via a square in
Figure 1. In practice, the most commonly used measurement model is to simply use an observed outcome (e.g., re-arrest,
placement in foster care) as a proxy for the construct of interest. More nuanced measurement models have also been
proposed [12, 29]. However, a barrier to establishing measures of appropriate reliance is that the outcome measurement
process is poorly understood. This poses a challenge in light of the issues we discuss below.

2.2 Outcome measurement error

When AI-based decision-support tools are developed using data generated via Figure 1, this introduces several key
issues in the estimation of 𝑌 ∗. First, because the true outcome of interest in AI-assisted decision settings is unobservable,
there can be a gap between 𝑌 ∗ and the proxy adopted by the measurement model (𝑌 ). In these settings, it is critical
to consider the size of this gap by examining the construct validity of outcome proxies. An additional impediment to
predicting 𝑌 ∗ arises from the results of past human decisions. As highlighted in Figure 1, human decisions are not
passive, independent events. Instead, they act as interventions that change the probability of 𝑌 ∗ (i.e., intervention effects).
For example, an opened child welfare investigation might connect a family with resources that reduces the chances of
child abuse. A related barrier to estimating 𝑌 ∗ is that human decisions change the probability of observing an outcome
proxy. For example, reoffence is only observed by released defendants, and defaults are only observed by borrowers
who receive a loan. Due to these selective labels, historical decisions influence the outcomes available for modeling. We
refer to this collective set of issues in estimating 𝑌 ∗ via observed outcome proxies 𝑌 as outcome measurement error.

Despite its importance in establishing measures of appropriate reliance, outcome measurement error remains largely
unacknowledged in AI-assisted decision-making literature [2–5, 8, 17, 24, 25, 35]. Instead, evaluations assume that the
outcome proxy predicted by the AI-based tool (𝑌 ) is equivalent to the true outcome of interest (𝑌 ∗). This poses an
issue in light of the challenges raised above. Specifically, because existing measures of appropriate reliance hinge on
the definition of a “correct" decision by a human or AI tool, and “correct" outcomes are determined based on proxy
Manuscript submitted to ACM
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outcomes, this could potentially lead to misleading evaluations. As a result, measures of appropriate reliance developed
in lab-based studies with limited outcome measurement error may fail to generalize when deployed in real world
settings where the gap between 𝑌 and 𝑌 ∗ is more pronounced. We now discuss three sources of outcome measurement
error in detail, and highlight how they can lead to misleading assessments of reliance.

2.2.1 Construct validity of outcome proxies. One source of outcome measurement error that plays a key role in
establishing assessments of appropriate reliance is the limited construct validity of outcome proxies. Construct validity
broadly describes how well latent phenomena of interest to humans is operationalized by a measurement model [21].
One key sub-component of construct validity especially relevant to AI-based decision support is content validity, which
assesses the degree to which an operationalization fully and completely captures the unobserved phenomena of interest.
In lending, a loan default proxy (𝑌 ) might demonstrate poor content validity for creditworthiness (𝑌 ∗) in cases where
default occurs due to unforeseen external events (e.g., viruses, natural disasters) unrelated to responsible fiscal behavior.
In pretrial risk assessments such as COMPAS, a re-arrest proxy (𝑌 ) might demonstrate poor content validity for “risk to
society" (𝑌 ∗) when unwarranted arrests are made or when committed crimes go undetected [15].

Failing to consider the construct validity of outcome proxies can lead to misleading evaluations of appropriate
reliance. In particular, in cases where construct validity of outcome proxies is poor, assessing appropriate
reliance with respect to the proxy instead of the outcome of interest to decision-makers can lead to mistaken
conclusions that humans are under-relying on the AI model. For example, because judges consider “risk to
society" (𝑌 ∗) on the basis of the likelihood of reoffence as well as culpability, they are more likely to release young
defendants [32]. These young children might be considered as high-risk when evaluated on the basis of a re-arrest
proxy (𝑌 ) alone. If an AI-based decision support tool predicts 𝑌 without taking this difference into consideration, it
may observe many judge over-rides in cases with young defendants. Under current definitions of under-reliance (i.e.,
human overrides when an AI-based tool is “correct"), this behavior from the judge will be seen as undesirable. As a
result, interventions targeted at mitigating “under-reliance" might be designed to encourage the judge to disregard
their own judgement in favor of the more narrow outcome definition adopted by the AI-based decision support tool.

When the construct validity of outcome proxies is in doubt, this presents a systemic challenge to the assessment of
appropriate reliance. To understand this challenge, we can consider possible relationships between the outcome of
interest (𝑌 ∗), the proxy adopted by the AI-based decision support tool (𝑌 ), and historical human decisions (𝐷) that may
occur in an AI-based decision-support context. We depict this relationship via a tree-way Venn diagram in Figure 2, and
consider the implications of each region in turn:

• R1. The first region shows instances where the human and outcome proxy both fail to capture 𝑌 ∗. In an AI-based
decision support context, this might occur when a child is not screened-in (𝐷 = 0), not placed within two years
(𝑌 = 0) but suffers serious abuse and neglect (𝑌 ∗ = 1). Left unaddressed, this will cause the human-AI team
to systematically miss instances of the outcome of interest to decision-makers. Previous work on AI-assisted
decision-making has referred to this region as omitted payoff bias [12, 23].

• R2. The second region contains instances of 𝑌 ∗ that are captured by the definition of the proxy outcome, but
not captured by historical human decisions. AI-based decision support tools may be particularly effective at
identifying instances within this region. Therefore, while developing measures of appropriate reliance, it may be
beneficial to encourage humans to trust the judgement of AI systems for fore instances within this region.
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Fig. 2. Venn diagram showing possible combinations of 𝑌 = 1, 𝑌 ∗ = 1, and 𝐷 = 1 when 𝑌 is an imperfect proxy of 𝑌 ∗. Each region
shows instances of human-AI decision-making that can occur in a given AI-based decision support context.

• R3. The third region contains clear instances of 𝑌 ∗ that are captured by both the observed outcome and the
human. Existing measurements of appropriate reliance may be more likely to correctly assess instances within
this region as times when human judgement is well-calibrated with the AI’s recommendation.

• R4. The fourth region contains instances of𝑌 ∗ that are captured by human decisions but not by the outcome proxy.
Critically, instances within this region may be incorrectly classified as under-reliance under current evaluations.
This is because humans correctly identify 𝑌 ∗, but the proxy targeted by the AI-based tool does not. Corrected
measures of appropriate reliance should take this region into consideration in order to accurately reflect the
goals of human decision-makers.

• R5-7. Regions 5-7 show instances where the outcome label, the human, or both, are false positives with respect
to 𝑌 ∗. R6 shows cases where 𝑌 and 𝐷 are in agreement, but both fail to detect 𝑌 ∗. Current evaluations may
mistakenly interpret instances in this region as appropriate reliance when a model predicting 𝑌 and the human
𝐷 are in agreement (i.e. 𝑌 = 1, 𝐷 = 1, and 𝑌 = 1). Further, evaluations may mistakenly interpret instances in
this region as over-reliance when a model predicting 𝑌 and 𝐷 are in disagreement (i.e. 𝑌 = 0, 𝐷 = 1, and 𝑌 = 1).
However, both of these conclusions would be mistaken given that the true outcome of interest 𝑌 ∗ did not occur.

In addition to construct validity of outcome proxies, there are also other outcome measurement challenges that
should be considered while assessing reliance in AI-assisted decision-making.

2.2.2 Intervention effects. Another source of outcome measurement error that impacts the assessment of appropriate
reliance is intervention effects resulting from past human decisions [11]. To understand this concern, we return to the
data generative process discussed in Section 2.1. Note that historical human decisions constitute an intervention on
𝑌 ∗, and therefore change the probability of observing its proxy 𝑌 in historical data. For example, consider a child
maltreatment setting, whereby social workers aim to prevent abuse via effective allocation of welfare resources. Here,
the goal of social workers is not simply to detect maltreatment cases via accurate decisions. Rather, call workers aim to
make it less likely that a child will be seriously harmed through interventions that connect the family with appropriate
Manuscript submitted to ACM
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support [22]. Whereas humans consider the question “How likely is 𝑌 ∗ under the proposed decision?”, AI-based tools
trained on data generated via Figure 1 answer the question “How likely is 𝑌 ∗ under historical human decisions?”.

This difference between how humans and AI-based decision support tools reason about𝑌 ∗ complicates the assessment
of appropriate reliance. This is because models trained on data generated via Figure 1 systematically underestimate the

risk of cases that benefited most from the decision [11]. For example, in the child maltreatment context, if a social worker
elected to open an investigation on a high-risk family, and that investigation averted abuse (𝑌 ∗), the data available for
modeling will show the case data (𝑋 ) along with a positive outcome (𝑌 ) (i.e., no removal from the home in two years).
In this case, a human deciding whether to follow the AI-tool’s recommendation should follow their own judgement and

open an investigation even though this is contrary to the outcome proxy. If a measure of appropriate reliance does not
fully capture this nuance, it may incorrectly infer that the human is “under-reliant" on the model when they decide to
intervene despite a low-risk prediction.

2.2.3 Selective labels. A final barrier we highlight to assessing appropriate reliance in AI-assisted decision-making is
selective labels [23, 26]. Selective labels describe a setting where outcome proxies are only observed among cases where
humans decided to intervene. For instance, in a pretrial setting, we only observe re-arrest (𝑌 ) in cases where judges
decided to release the defendant. In lending settings, we only observe default (𝑌 ) in cases where a loan was approved
by the lender. Initial work on selective labels highlights the importance of considering selective labels while evaluating
appropriate reliance. In particular, previous work has shown that after accounting for the effects of selective labels,
human decisions are more predictive of proxy outcomes than they would be under a naive assessment that doesn’t take
selective labels into account [23, 26]. Therefore, accounting for selective labels is an important step to developing a
suitable baseline measure of human vs. AI decision quality.

3 MEASUREMENT, PREDICTION, AND EVALUATION: A UNIFYING FRAMEWORK

In the previous section, we discussed outcome measurement challenges in AI-assisted decision-making and their relation
to assessments of appropriate reliance. This raises the question: “how should assessments of appropriate reliance account
for outcome measurement error?" This question is difficult because accounting for outcome measurement error requires
understanding the construct of interest to decision-makers. For instance, in the Venn diagram presented in Figure 2, it is
challenging to establish which region a particular case occupies without understanding how𝐷 ,𝑌 , and𝑌 ∗ are interrelated.
Initial work in AI-assisted decision-making has proposed solutions to some aspects of outcome measurement error
[11, 12, 26]. However, community members establishing measures of appropriate reliance may not be fully aware of this
work. This is understandable, as discussion of outcome measurement error remains scattered among the quantitative
social sciences, economics, and machine learning communities (Table 1). Therefore, drawing from this literature, we
provide a unifying framework for characterizing outcome measurement in AI-assisted decision-making. Our framework
captures a broad set of previously proposed modeling approaches and contains three aspects: measurement, prediction,
and evaluation.

3.1 Measurement

During the measurement step of model development, the unobserved outcome of interest to the organization (𝑌 ∗) is
estimated using observations from the data generative process in Figure 1. This training data can be described by the
tuple (𝑋 , 𝑍 , 𝐷 ,𝑊 ), where each element is a random variable involved in the data generative process and𝑊 is a set of
observed outcome proxies𝑊 = {𝑌 1, . . . , 𝑌𝑘 }. Here, we use𝑊 instead of 𝑌 to represent the more general case where
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multiple outcome proxies are used in parallel to approximate 𝑌 ∗. In a general form, the measurement model used in
AI-assisted decision-making is some function 𝐹𝑚 of the data (𝑋 , 𝑍 , 𝐷 ,𝑊 ) available to the organization. Given this data,
the organization develops an estimate for 𝑌 ∗ via:

𝑌 ∗ = 𝐹𝑚 [𝑋,𝑍, 𝐷,𝑊 ] (1)

We highlight two key aspects of this measurement model. First, the organization has full access to (𝑋 , 𝑍 , 𝐷 ,𝑊 ) based
on historical decisions made prior to the introduction of the decision support tool. Recall from Figure 1 that 𝑍 is often
unobserved by the organization. For full generality, we include 𝑍 in this definition because existing work also considers
settings where unobservables are available during tool development, but not during deployment [10].

Establishing 𝐹𝑚 involves outcome measurement assumptions made by the tool developers and organization. There is
no direct way to estimate 𝑌 ∗ without measurement assumptions because 𝑌 ∗ is not directly observed in historical data.
For example, one common assumption adopted in practice is that an observed outcome proxy is a reliable estimate
for 𝑌 ∗. In these cases, 𝐹𝑚 can be given by 𝑌 ∗ = 𝑌 1. Here, 𝑌 1 ∈𝑊 is a single observed outcome proxy (referred to as
𝑌 in Section 2). Though this assumption is most common, others have been adopted in AI-assisted decision-making
and quantitative social sciences literature. For example, a broad class of work in quantitative social sciences uses
Latent Class Analysis (LCA) to estimate𝑌 ∗ based on a set of multiple observed proxies𝑊 [29]. This method makes the
measurement assumption that {𝑌 1, 𝑌 2, . . . , 𝑌𝐾 } ∈𝑊 are conditionally independent given 𝑌 ∗. As an additional example,
a recently-proposed AI-assisted decision-making approach learns a measurement model 𝐹𝑚 by assigning 𝑌 ∗ = 1 when
experts are predicted to agree, and uses a proxy 𝑌 1 otherwise [12]. This work makes the measurement assumption
that expert decision consistency will be more likely when 𝑌 ∗ = 1. Table 1 builds on these examples by describing the
measurement model (𝐹𝑚) assumed by a broader set of AI-based decision support work.

3.2 Prediction

After establishing a measurement model to estimate 𝑌 ∗ given (𝑋 , 𝑍 , 𝐷 ,𝑊 ), organizations and researchers then develop
a prediction model for use in decision-support settings. This prediction model takes observable features about an
individual (𝑋 ) and makes a prediction about the unobserved outcome of interest (𝑌 ∗) established during the preceding
measurement step. Because𝑊 and 𝑍 are unavailable during deployment of the AI-based decision support tool, these
are not included in the prediction model. Typical AI-based decision support workflows do not assume that human
decisions are available at run-time. This is because the algorithmic recommendation is designed to augment rather than

replace the human decision-maker (i.e., algorithm-in-the-loop) [2, 3]. Nevertheless, a set of recently proposed AI-based
decision support methods also consider the case where a human decision is available at runtime, and available to the
model (i.e., human-in-the-loop) [16, 28, 33, 36]. Therefore, to capture the full generality of possible prediction models,
we include both 𝑋 and 𝐷 as possible prediction inputs. Given 𝑋 and optionally 𝐷 available at runtime, the prediction
model estimates:

𝑌 = 𝐹𝑝 [𝑌 ∗ |𝑋, 𝐷] (2)

Note that this step mirrors current AI-based decision support tools that predict an estimate 𝑌 for the observed
outcome proxy 𝑌 1. The key distinction we draw here is that this prediction model is actually estimating a measurement
model 𝑌 ∗ established during the outcome measurement step. Table 1 shows the prediction model (𝐹𝑝 ) used by a broad
set of AI-based decision support methods.

Manuscript submitted to ACM



Under-reliance or misalignment? How proxy outcomes limit measurement of appropriate reliance in AI-assisted
decision-making 9

Work Measurement (𝐹𝑚) Prediction (𝐹𝑝 ) Evaluation Challenge(s)

Gao et al. [16]
𝑌 ∗ = 𝐹𝑚 [𝑊 ], where
𝑊 = 𝑌 1. Assumes that
outcome proxy is
ground truth.

𝐷 available at run-time
(human-in-the-loop).
Work improves 𝐹𝑝
using human decisions.

No assessment of 𝐹𝑚 .
Accuracy and ROC based
evaluation of 𝐹𝑝 . None

Madras et al. [28]
Wilder et al. [36]
Tan et al. [33]

Hilgard et al. [20]

Accuracy-based evaluation
of 𝐹𝑝 with focus on human
decision performance. No
evaluation of 𝐹𝑚 .

De-Arteaga et al.
[12]

𝑌 ∗ = 𝐹𝑚 [𝑊,𝐷,𝑋 ] with
𝑊 = {𝑌 1}. Assumes
𝑌 ∗ can be identified via
consistancy of expert
decisions.

Assess 𝐹𝑝 via preci-
sion/recall of on training
outcome 𝑌 1 and 𝐹𝑚 via
precision/recall on held-out
outcomes 𝑌 2, 𝑌 3.

Construct
validity,
proxy obser-
vation bias

Coston et al. [11]
𝑌 ∗ = 𝐹𝑚 [𝑊,𝐷], where
𝑊 = {𝑌 1} and 𝑌 1 only
observed when 𝐷 = 1.

𝐹𝑚 uses doubly-robust esti-
mation to account for treat-
ment effects of 𝐷 .

Intervention
effects

Lakkaraju et al. [26]
𝑌 ∗ = 𝐹𝑚 [𝑊,𝐷], where
𝑊 = {𝑌 1} and 𝑌 1 is ob-
served when 𝐷 = 1.

𝐷 un-available at
runtime (algorithm-
in-the-loop)

Proposes method for ac-
counting for selective labels
during the evaluation of 𝐹𝑝

Proxy obser-
vation bias

Kleinberg et al. [23]
𝑌 ∗ = 𝐹𝑚 [𝑊 ], where
𝑊 = 𝑌 1 and 𝑌 1 is only
observed when 𝐷 = 1.

Uses contraction method
proposed in [26]. Evaluates
model on a set of held-out
outcomes

Construct
validity,
Proxy obser-
vation bias

Coston et al. [10]

𝑌 ∗ = 𝐹𝑚 [𝑋,𝑍, 𝐷,𝑊 ],
where 𝑊 = {𝑌 1}. As-
sumes confounders Z
available at at training.

𝐹𝑚 uses doubly-robust esti-
mation to account for treat-
ment effects of 𝐷 .

Intervention
effects

Latent Class Anal-
ysis (McCutcheon
[29])

𝑌 ∗ = 𝐹𝑚 [𝑊 ]. As-
sumes {𝑌 1, ..., 𝑌𝐾 } are
conditionally indepen-
dent given latent class
membership.

3-step LCA with co-
variates [34]. Could in-
clude settings where
𝐷 is known or un-
known at runtime.

Assess 𝐹𝑚 with 𝐺2 or BIC.
𝐹𝑝 fit with a logit model.

Construct
validity

Fogliato et al. [14]

𝑌 ∗ = 𝐹𝑚 [𝑊 ], where
𝑊 = 𝑌 1 . Assumes mea-
surement error between
𝑌 ∗ and 𝑌 1 with known
magnitude.

N/A

Primary contribution is a
statistical framework for
assessing measurement er-
ror (termed target variable
bias).

Construct
validity

Table 1. Taxonomy of measurement, prediction and evaluation challenge(s) addressed by a broad set AI-assisted decision-making
methods drawn from risk assessment and algorithmic decision support literature. We show cases where an outcome proxy is assigned
as the measurement hypothesis by 𝑌 ∗ = 𝐹𝑚 [𝑊 ], where𝑊 = 𝑌 1.
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3.3 Evaluation

A final stage of AI-based decision support tool development involves evaluation. In classical modeling contexts,
evaluation efforts assess 𝐹𝑝 in terms of accuracy, AUC, or statistical fairness measures with respect to a proxy outcome.
In addition to model-based evaluations, it is becoming increasingly common to assess how the system is adopted by
humans in practice [1, 23]. For example, an evaluation might assess whether decision-makers “over-rely" or “under-rely"
on the tool [9]. Because these evaluations are with respect to 𝐹𝑝 , they are suitable in cases where the prediction is
aligned with the interests of the decision-maker, but incorrect in a specific instance (e.g., due to missing contextual
information or dataset shifts). However, this evaluation of 𝐹𝑝 is distinct from an evaluation of the measurement process

𝐹𝑚 that determines whether the model effectively targets the construct of interest 𝑌 ∗.
Recently proposed statistical methods propose some avenues for evaluating 𝐹𝑚 at a model level [11, 14, 23, 26]. At

a broader level, tools used to assess construct validity are also used to assess different aspects of 𝐹𝑚 . For example,
organizations might examine the convergent validity of 𝐹𝑚 to see whether estimates of 𝑌 ∗ correlate with other known
measurements of the same unobserved outcome [21]. They might also examine the predictive validity by checking
whether estimates of 𝑌 ∗ are predictive of downstream external outcomes. Measurement theory in the quantitative social
sciences provides a rich set of ways to evaluate the construct validity of [19]. Notably, however, current measurements
of over-reliance and under-reliance do not involve 𝐹𝑚 , which makes it difficult to assess how the measurement model
will impact resulting human trust and decision-making. We summarize evaluation-related procedures adopted by a
broad set of AI-assisted decision-making literature in Table 1.

4 GUIDELINES AND IMPLICATIONS

In the discussion above, we described several outcome measurement-related challenges that may limit existing as-
sessments of appropriate reliance. In light of this discussion, we now provide suggestions for the development of
appropriate reliance measures in AI-assisted decision support. Most broadly, the research community should consider
outcome measurement error carefully during the development of reliance measures. This is because if an evaluation of
reliance mistakenly claims that a human is under-relying on a prediction model (𝐹𝑝 ) when they are in fact disagreeing
with the outcome measurement (𝐹𝑚), organizations may pressure decision-makers to follow the guidance of misaligned
tools. Applying excessive organizational pressure to follow incorrect tools has the potential to introduce damaging
consequences [7, 13, 18, 22].

A first step that the community can take to better address outcome measurement error in assessments of reliance is to
consider a more realistic suite of datasets in empirical evaluations. Ideally, these datasets should involve data drawn from
historical human decision-making processes (Figure 1), as these better reflect real-world deployments of AI-assisted
decision-making systems. As a second step forward, we suggest developing mechanisms for assessing whether human
over-rides of AI recommendations are indicative of under-reliance (𝐹𝑝 ), or are symptoms of a more fundamental
outcome measurement issue (𝐹𝑚). Further, it may also be valuable to investigate how closely humans scrutinize an AI’s
recommendation under different outcome measurement conditions. For example, when the proxy targeted by a model
differs from the construct of interest, humans may disengage and over-rely on the model recommendations.

Finally, measures of appropriate reliance should be developed that account for nuanced issues such as intervention
effects and selective labels. Because of the complexity of these issues, and the unknown effects they may have on human
decision-making, it may be necessary to conduct controlled empirical experiments to understand their effect on human
reliance patterns. We hope that our framework for characterizing outcome measurement error through the lens of
measurement, prediction, and evaluation will provide a valuable springboard for these research efforts.
Manuscript submitted to ACM
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