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Abstract. Predicting fluid intelligence based on T1-weighted magnetic
resonance imaging (MRI) scans poses several challenges, including devel-
oping an adequate data representation of three dimensional voxel data,
extracting predictive information from this data representation, and de-
vising a model that is able to leverage the predictive information. We
evaluate two strategies for prediction of fluid intelligence given struc-
tural MRI scans acquired through the Adolescent Brain Cognitive De-
velopment (ABCD) Study: deep learning models trained on raw imagery
and classical machine learning models trained on extracted features.
Our best-performing solution consists of a classical machine learning
model trained on a combination of provided brain volume estimates and
extracted features. Specifically, a Gradient Boosting Regressor (GBR)
trained on a PCA-reduced feature space produced the best performance
(train MSE = 66.29, validation MSE = 70.16), surpassing regression
models trained on the provided volume data alone, and 2D/3D Convo-
lutional Neural Networks trained on various representations of imagery
data. Nonetheless, these results remain slightly better than a mean pre-
diction, suggesting that neither approach is capturing a high degree of
variance in the data.

Keywords: Image Processing· Neurocognitive Prediction · Machine Learn-
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1 Introduction

An ongoing challenge in neuroscience is relating brain structure to function,
both at a neural scale and at the level of phenotypic expression. Though new
neuroimaging approaches such as functional magnetic resonance imaging (fMRI)
and diffusion tensor tractography have begun to shed light into this area, relating
basic structural properties to complex behavioral expression remains difficult
[1,2,3]. T1-weighted MRI is one neuroimaging method which has been used to
relate brain structure to progression of autism, Alzheimer’s, and Parkinson’s
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[4,5,6]. However, these abnormalities are often associated with gross differences
in brain tissue, and the work employing structural MRI to discern more nuanced
differences in regular brain function remains limited. Methodological advances
in this area could prompt neuroscientific discoveries and objective assessment
methods for normal and abnormal brain function.

One specific behavioral measure presumably tied to brain structure is fluid
intelligence, especially fluid intelligence, which is central in abstract reasoning
and problem solving [7]. Fluid intelligence has been linked to fronto-parietal con-
nection properties [9], and a number of other brain characteristics [10]. Yet, no
literature found by the authors directly links MRI-based structural information
to fluid intelligence. A large corpus of data available through the Adolescent
Brain Cognitive Development (ABCD) Study provides an unprecedented op-
portunity to investigate potential links between fluid intelligence and structural
features of the brain. What's more, the ABCD Neurocognitive Prediction Chal-
lenge offers a structured context in which to develop pipelines for inferring fluid
intelligence scores from scans acquired in the ABCD study. This work proposes
a prediction pipeline addressing this challenge consisting of a GBR trained on
ROI shape features. Results based on other regressors trained on extracted shape
features, and results based on CNNs trained on representations of raw imagery,
are also provided for comparison.

2 Related Work

A key issue to be addressed in a neurocognitive prediction context is the infor-
mation representation, as MRI data natively occupies a three dimensional voxel
space. One basic approach is to consider volume estimates (or other derived fea-
tures) of brain regions, as the relative size and form of each region may contribute
to cognitive function. Yet another approach is to examine patterns in the raw
MRI imagery using computer vision methods. The information representation
able to best capture variance in the data related to fluid intelligence may lead
to the best results.

2.1 Raw Imagery

A recent trend in computer vision is replacing hand-engineered features with the
unprocessed image to create an end-to-end prediction pipeline. This approach
has proved particularly effective when combined with deep learning methods
such as convolutional neural networks (CNNs), which have demonstrated the
ability to extract salient features directly from the input [13]. However, most
of these methods have been applied in the context of a two dimensional input
image, as opposed to a 3D voxel space. One approach is to slice into the three
dimensional space, however, this raises the issue of which slice is most discrim-
inative, and may leave valuable information un-processed. A 2.5D CNN, which
ingests slices from the axial, coronal, and sagittal planes, is one solution address-
ing this problem. This approach has proven useful for generating state-of-the-art
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brain segmentation results [16]. Yet, this strategy also poses the challenge of the
optimal slice to extract from each dimension. This motivates a 3D CNN which
can ingest full imagery data from the entire voxel space. A 3D CNN has been
employed for Alzheimers disease diagnostics, and demonstrated high predictive
accuracy [5].

2.2 Derived Features

One direct method of representing brain structure is calculating features based
on brain regions of interest, then training a machine learning model on these fea-
tures [4,8,12]. For example, a deep autoencoder trained on brain region volume
features predicted autism onset with high accuracy [4]. Another work successfully
leveraged global and local shape features of tumor areas to predict benign vs.
malignant tumor regrowth [12]. Specifically, this approach extracted global fea-
tures such as elongation, compactness, volume, and surface area, as well as local
characteristics calculated from Gaussian and mean curvatures of a constructed
isosurface. Global shape features were calculated using the Insight Segmentation
and Registration Toolkit (ITK) implementation [14]. Not only did this method
achieve high accuracy, but it also conferred the advantage of revealing which
features are most discriminative of tumor malignancy [12]. The interpretability
of deep learning methods, especially those leveraging raw imagery data, is less
direct.

3 Methods

Approaches for predicting fluid intelligence based on MRI imagery based on both
(a) raw imagery, and (b) derived features were developed and tested. We pre-
dicted that deep learning methods ingesting raw MRI imagery would ultimately
have more representational power and would demonstrate better results. How-
ever, due to the complexity of the raw MRI imagery, the deep learning models
we tested did not yield better results with this dataset. Though classical ma-
chine learning models trained on derived features provided lower mean squared
error, we still provide details regarding the deep learning methods developed for
comparison.

3.1 Deep Learning Methods

In order to extract shape information for each brain region, we convolved across
voxels in three dimensions using a 3D CNN. This is motivated by recent work
indicating CNNs can extract meaningful shape patterns in image classification
[15] and object detection [11] contexts. Our pipeline for deep learning based
on raw imagery is shown in Fig. 1. We adapted a 3D-ResNet [18], which was
originally used for video classification, to integrate information across slices.
Two specific adaptions were required. (1) Since the third dimension is temporal
correlation in a video classification task, this was changed to spatial correlation
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over the input shape. (2) The final layer was updated to consist of a single node
outputting the predicted fluid intelligence score.

Fig. 1. 3D CNN for prediction of fluid intelligence score for each brain region. Each
hemisphere is fed into a 3D ResNet separately and then results are stacked into one
connected layer together. The score predicted from each region (both left and right
hemispheres) is then aggregated using a classical machine learning ensemble method
to generate a final score.

As shown in Fig. 1, feature extraction from each provided region of segmented
grey matter [17] was first conducted using the previously described 3D CNN.
The proceeding fully connected layers were organized hierarchically, with the
first layer matching extracted features across hemispheres. A model was trained
for each brain region (including left and right hemisphere), then predicted scores
were ensembled using a regression model. A preliminary assessment of regression
models including AdaBoost, Ridge regression, Random Forest, and SVR showed
that AdaBoost provided the best performance, which was used in the reported
experiments. This was performed for both grey matter and non-grey matter in
the region of interest.

3.2 Shape-Based Machine Learning Methods

We also developed a preprocessing pipeline which ingests the skull stripped and
raw MRI images provided for each participant, and extracts global shape features
based on isolated ROIs, full grey matter, and full non-grey matter as calculated
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by [17]. Version 4.13.1 of ITK was used to extract (a) volume, (b) elongation, (c)
surface area, (d) roundness, and (e) flatness from each of the 100 largest regions
provided in the segmented grey matter [14].

Fig. 2. Pipeline for extracting and aggregating features used in regressor training (clas-
sical machine learning models). A. shows the dataset for provided estimates alone,B.
shows the dataset consisting of only ROIs, while C. shows the dataset consisting of all
features.

The ordering of these 100 regions was fixed based on the first training partic-
ipant and kept constant for the training, validation, and test data. ITK returns
extracted features for each of the non-contiguous segments of the isolated ROI,
and we used the first (largest) segment returned. Shape features from the overall
grey and non-grey matter were extracted according to the same process above,
except that each shape feature was averaged for all segments returned. Non-grey
matter was isolated by applying the grey matter as a mask to the overall skull-
stripped image for each participant (shown in Fig. 3). This non-grey matter was
included to provide some proxy of white matter, which has been shown to be a
relevant factor for fluid intelligence in the literature. Including this information
empirically showed a slight performance improvement in validation loss.

The feature extraction process resulted in a 500 dimensional feature space
generated by the ROI shape extraction, and a 10 dimensional feature space gen-
erated by global feature extraction. Each of these features were then combined
with the provided volume estimates to give a final dataset for training. Since this
dataset occupied a high-dimensional space, dimensionality reduction (by PCA)
was used to project the data to a lower dimensional subspace. A series of regres-
sion models were then trained on the PCA-reduced final dataset (Fig. 2.C), as
well as the given volume data alone (Fig. 2.A), and the extracted ROI features
alone (Fig. 2.B). The specific models trained included lasso, ridge, support vec-
tor, gradient boosting, and AdaBoost regressors. A grid search was performed
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Fig. 3. Process of isolating grey and non-grey matter for feature extraction using mask-
ing.

to determine the optimal parameters for training on all datasets, and PCA was
included in this parameter grid search for the (Fig. 2.C) dataset. Models were
evaluated by the MSE error metric, which defines the error between the pre-
dicted labels Ŷ and actual labels Y over n samples as:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

The train, validation, test split aligned with the data provided in the ABCD
Neurocognitive Prediction Challenge, with 3739 samples used for training, 415
samples used for validation, and 4402 samples left out for testing. In order to
establish a baseline estimate of the predictive value of each model, the error of
predicting the mean was first established by calculating the average score from
the training dataset and calculating the MSE between this mean and each label
in the training and validation datasets. A series of regressors were then trained on
each of the three datasets described above, including Ridge and Lasso regression,
SVR, GBR, and AdaBoost.

4 Results

Table 1 reports training and validation error obtained from training the five
algorithms above on dataset A, B, and C (Fig. 2), as well as results from the
best-performing 3D CNN models. Fig. 4 shows a visual comparison of validation
loss provided in the table. Overall, the GBR demonstrated the highest predictive
value for each of the three extracted feature datasets, with the best performing
model being a GBR trained on the PCA-reduced full features. This reached
a MSE(train) = 66.29 and MSE(test) = 70.16. The optimal configuration
for this model consisted of 95 PCA components and 45 learners in the GBT.
Compared with 3D CNN models, as shown in Table 1, the GBT outperformed
3D CNN models by 1.14 MSE in validation error.
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Fig. 4. Validation MSE for each of the five models trained on the three datasets. The
horizontal bar indicates the MSE obtained by predicting the mean of the training
dataset.

Dataset Method Train (MSE) Val.(MSE)

Mean prediction 85.84 71.83
Volume (A) Ridge reg. 82.64 71.52

Lasso reg. 81.62 72.53
SVR 83.06 72.51
GBR 80.16 71.1

AdaBoost 79.60 72.49
Extracted Features (B)

Ridge reg. 78.28 71.22
Lasso reg. 85.84 71.83

SVR 77.88 71.43
GBR 73.50 71.21

AdaBoost 77.85 70.79
Volume + Extracted Features (C)

Ridge reg. 81.84 71.22
Lasso reg. 71.83 85.84

SVR 72.22 72.16
GBR 66.29 70.16

AdaBoost 80.10 72.03
White Matter Imagrey 3D CNN 85.43 71.64
Grey Matter Imagery 3D CNN 85.52 71.75
White+Grey Model Imagery 3D CNN ensemble 84.55 71.30

Table 1. Train and validation MSE obtained from all methods and datasets.
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5 Discussion

Overall, it proved difficult to find a model which could capture a large degree
of variance in the data. The best validation score obtained indicated a R2 value
of .03, which captures a modest 3 percent of the variance in the data. Most of
the derived features and models demonstrate menial incremental improvements
as opposed to qualitative advances in neurocognitive prediction. Though we
predicted that deep learning would provide a robust predictive strategy, this
was not the case. We suspect the reason is that (1) excessive variability in the
features extracted between subjects or (2) the input images are too complex for
a CNN to learn relevant features. Though the ABCD dataset contains a large
amount of data for a neuroscience context, this quantity still falls very short
of the enormous corpuses typically used in other image processing domains.
Therefore, additional data could help aid prediction. However, it is possible that
given the correct way of representing the data, better results could be obtained.
Models such as autoencoder could also provide predictive value, as they have in
similar contexts [4].

It is also possible that structural features alone do not contain enough in-
formation related to fluid intelligence to be useful in prediction contexts. Other
information such as cortical connectivity and functional activation may be re-
quired to capture an accurate assessment of ones fluid intelligence. Combining
multi-modal neuroimaging datasets presents yet another representational prob-
lem, but could prove fruitful in bolstering model performance.
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